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Introduction

In this paper a general formulation is presented for the dynamic

response of a viscoelastic structural member using a modal approach.

This formulation will depend only on the equations of motion of the

structure. The formulation will apply to both seif—adjoint and

non—self—adjoint systems of equations of motion, non—homogeneous

boundary and in—span conditions, and arbitrary excitation forces and

displacements. In addition, proportional viscous damping may be

included in a formulation.

The first to propose a modal solution of a viscoelasto—kinetic

problem was Valanis [1]. By assuming that Poisson’s ratio remains

constant, the dynamic problem can be resolved into a quasi—static

viscoelastic problem and a dynamic elastic problem . The latter problem

can be solved using a classical modal analysis , while the quasi—static

portion may be solved using a correspondence principle. Robertson and

Thomas (2 1 used a similar philosophy , and arrived at slightly different

results than Valanis. These were extensions of Valanis ’ results including

more general boundary conditions and non—zero initial conditions.

Robertson later applied these results to several specific members ,

such as a circular viscoelastic plate [3], and a viscoelastic beam

[4]. However , the approach taken was not completely general , nor did

it consider non—eelf—adjoint structural members.

In this paper , a general formulation is derived that goes beyond

the work of the above investigators . A general set of formulas is

derived that explicitly provides the relationship needed to determine the

1.2
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dynamic response of a viscoelastic member due to arbitrary loadings.

A very general set of governing equations of motion can be uncoupled

with this approach . These equations may be non—self—adj oint and

possess general non—homogeneous boundary and in—span conditions . Two

illustrations of a simple Voigt—Kelvin beam and an axisytnmetric viscoelastic

circular plate are given to demonstrate the use of the general

fo rmulation.
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General Formulation

The dynamic response of a viscoelastic structural member will be

formulated by using a modal analysis. The formulation will incorporate

a damped viscous foundation, which must be proportional to the mass

and/or stiffness of the member. The differential equations governing

the linear motion of an isotropic and homogeneous viscoelastic member

may be written as

* * ~~~
( X + ~j)G w +~~~Gw  p ~~+c—1. (la)0 0 k,ki 0 i,kk

with the boundary conditions,

X
O
G*wk k nj + p0G

*(vj k + wkj) n.~ — on B
1 

(ib )

w~~~~O o n B
2 

(le)

and the initial conditions,

w
1

(x ,0) — w~0 (x); -~~~~-~~~ (x ,0) — ~40 (x) (ld)

where,

— displacement in the 1th coordinate direction

constants

— unit outward normal to the surface

— prescribed surface tractions on B1

w10,~r~0 — prescribed initial displacement and velocity ,
respectively.

C — time—dependent relaxation modulus

1.4
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In addition, the * notation denotes the convolution integral,

f(t)*g(t) — f(t—r) 
(t) 

dt (2)

and wj,k denotes the partial derviative of w~ with respect to x~. Note

that in deriving these equations , it has been assumed that Poission ’s

ratio remains constant. As Valanis points out, several researchers

have shown that if a variation exists, it is not substantial, and that

for incompressible materials (or for problems in which the dilation

is not the primary mechanism of deformation) this simplification

results in nearly exact solutions.

The equation of motion given by equations (1) may be written

in the following alternate form:

2
G* Du (x,t) — ~ A~ (x)a~u(x~t )—P (x~t) (3a)

i—i

with the initial conditions,

u(x,0) — u
0
(x); au(x,0) — ~z0

(x) (3b)

and the time—dependent boundary and in—span conditions ,

G*L~ (u ,t) p~ (x ,t) on S (3c)

where u(x ,t) i. a column vector of dependent state variables including

displacements as well as internal forces. The notation in these

equations is defined as follows:

F(x ,t) — N—dimensional column vector of body forces

D( x) ,L1(x) — NxN spatial matrix linear differential operators

- 
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(x) — NxN spatial matrix

Pi(x ,t) — N—dimensional column vector containing the prescribed
non—homogeneous surface tractions and homogeneous prescribed
displacements

u0 (x) ,~i0
(x) — N—dimensional vectors of prescribed state variable

initial conditions

—j
Note that external proportional viscous damping, such as found in a

foundation, is included in the matrix A~(x). In this form, N equations

of motion are represented by a matrix equation with differential

operator elements. It must be kept in mind that these equations only

apply to linear isotropic viscoelastic materials, deforming under

isothermal conditions with a constant Poisson’s ratio. Nevertheless,

this general form of the equations of motion describes the response of

a wide class of viscoelastic structural members.

The dynamic response of a general viscoelastic member may be expressed

in the usual modal solution form,

u(x ,t) — 

~~l 
hm (t)*m (X) (4)

In this solution , *m(X) is a vector of undamped m ode shapes corresponding

to the vector of dependent state variables u(x ,t) . The coefficient

h(t) is a scalar factor which Indicates the relative contribution of

the mthl mode to the overall response. In order to find the undamped

mode shapes , the classical elgenvalue problem must be solved. Using

the notation of equation (3) , the undamped free motion problem takes

the form

1.6
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~~‘~n~
2 A2(x)* (x) (5a)

with the combined boundary and in—span conditions ,

L~~~ (x) — 0 on S (Sb)

The viscoelastic member may be non—seif—adjoint, so that a biorthogo—

nality relation will be needed in deriving the elastic modal expansion.

Hence, use will be made of the adj oint undamped free motion problem,

D*~ (x) (A )2 A2(x)* (x) (6a)

with the boundary and in—span conditions ,

— 0 on S (6b)

where the tildes refer to the algebraic adjoints of the corresponding

quantities . The eigenfunctions, *n (x) and *~ (x)~ can be shown to

satisfy the biorthogonality relation [5] given by

(7a)

and

Q~ <*n~
A2*n

> (7b)

where is the kronecker delta and where the notation <4sn~
A2*n

Y

denotes the inner product,

— 
~ 

(A2*~ )dx (8)
Domain

Solution of equations (5) and (6) can be readily found for many

structural members. Thus , only the temporal coefficients h (t) must be

1.7

- - ~~--~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——- - --~- —~~~r 
-. 

~~~~~~~~~~~
—.—— —

~~~
— 

~~~~~ 

— —



determined to complete the modal solution in equation (4). To derive

an uncoupled equation for these coefficients, begin with the extended

Green ’s identity,

D(G*u)> — < (G*u),D~,> — B(~, , (G*u))  (9)

The term (G*u) is a function of both the spatial and temporal variables ,

which is assumed to be differentiable to the extent demanded by the

operator D. The bilinear form B(* , (G*u)) represents the non-homogeneous

boundary and in—span conditions . It is identified by forming the inner

product <iv , D(G *u)> and then integrating by parts with respect to the

spatial variables. Note that the appearance of C does not effect the

integration by parts because C is a function of time. The boundary

and in—span conditions are then grouped to form the bilinear functional

B(* , (G*u)) .  Since the prescribed displacements on the boundary are

zero , this bilinear form contains only the nonhomogeneous surface tractions

which involve the relaxation modulus G(t) . In fact , it is this form

of B(Ip ,(G*u)) that prohibits non—homogeneous displacements from being

prescribed on the boundaries because these may not be expressed in

the form G*u.

Before returning to equation (9) , note that a property of the

convolution is

G*(Du(x ,t ) )  — (Du(x ,t))*G (10)

where Du(x,t) may be treated as an arbitrary function of x ant t.

Since D is a spatial differential operator it does not effect G(a function

of time) so that

1.8
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G*Du — Du*G — D(u*G) D(G*u) (11)

With this equation the governing equation of motion (equation (3a))

becomes

2
D(G*u) — ~~ A~ (x)~~u (x~t) — F(x ,t) (12)

j  —l

Now substitute equations (6a) and (12) into the Green’s identity in

equation (9) to obtain

+ 92<* ,A2u> + A 2 <(G*u), A2~ > (13)

— <
~m~

F’> + B(~, , (G*u))

Noting the homogeneous form of the Green ’s identity,

c (G*u) ,  A2* > < 
~m~

A2~~*
h1)> (14)

and the G is a function of time, it follows that

<~m~A2~~*h1)> — G*<i~~,A2U> (15)

or ,

— G*c~~ ,A2u> (16)

Using equation (16) in equation (13) gives

+ ~< * , Aiu> + 
~~m~

2 G*<* ,A5Zu>

— <*m~
F’> + B(~b , (G*u) (17)

Invoking the proportionality conditions,

1.9
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(a + bA 2 ) <*m A2u> _bB (
~m~

U) (18)

a co on inner product may be factored out of equation (17) to give

+ (a + bA 2)~ + ( A ) 2 G*~

(19)

— <
~ m’~

> + B (ip , (G*u)) + b aB (~) ,u)

In this equation, a and b are constants of proportionality for viscous

damping such that

A1u = aA2u — bDu (20)

and 
~m

(t) is def ined to be

= < * , A2u> (21)

so that the generalized initial conditions, ~m (0) and ~m (0) are f ound from this

equation at t 0. The coefficients hm(t) are found by repeating the

steps outlined in Reference (6] for elastic numbers. Since the orthogonality

relation remains the same as for proportionally damped elastic members,

it is not surprising that

~ (t)h ( t) — 

- 

(22)

which is identical to the result previously obtained.

Although a solution of the viscoelastic dynamic problem may in

principle be given by equation (19) , a more eff icient form of the

modal solution may be found by extracting a static solution from the

modal expansion. This may be done be rearranging equation (19) into

I .10
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the f orm:

G*~ 
~~ [~

m 
+ (a+bA2) 

~ 
- 

H i  
(23)

where Hm is the generalized force term given by

H ( t) — 

~
‘m~

’ dx + B(~b (G*u))  + baB (p ,u) (24)

Taking the convolution of both sides of equation (4) and using equation

(22) gives

= (G*~ )
G*u = 

m 
~~~~~ 

(25)
n~~1 ‘<rn

Now introduce equation (23) into (25) and after some rearrangement obtain

~1G*u 
~ A~ Q — X~Q I ~rn + (a+bA 2)

~ (26)
m 1  m rn rn—i - rn m L

The first term in this equation is the static contribution to the

viscoelastic solution. As Valanis [1] and Robertson and Thomas (2]

have pointed out, a dynamic viscoelastic problem has a solution of the

form

~ E (t)
u(x ,t) — ~~(x,t) + ~ m 

~p (x) (27)

~~l ~m m

where is the quasi—static viscoelastic solution. Equations (26)

and (27) are equivalent if

— 
~ (28)

m m

1.11
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and

G*E
m 

— — 

Jj ~~~ 
[
~m 

+ (a+bA2)~~~
] 

(29)

Then equation (26) becomes

G*u — G*~ + 
~~ 

(G*E ) _
~~~
. (30)

m

which implies equation (27). It is now possible to obtain a more

thorough understanding of the terms in equation (30). The Green’s

identity may be expressed in the form

<*n~~~~* s
)> = < (G* ),  D~ > + B(4~~,(G*~~)) (31)

Substitute equations (6a) and (28) into this equation to obtain

~ A 2
— 

~ rHm (t)<*m ,A *n>l + B(* ,G*~~)) (32)
m=1 A 2Q 2

m m  i

where integration of the series is assumed to be equal to a series of

the integrals. Using the biorthogonality relation (equation (7)) and

in view of equations (11) and (24) , equation (32) becomes

n’ 
a*rñ8> — <4~~F> — B(* ,(G*u)) ba (iP~~u) 

— B(ip,(c*;)) (33)

The billinear forms in the above equation contain contributions to the

generalized forcing function from the non—homogeneous tractions on the

surface. In particular, the form B(*n~ G*u)) contains the non—homogeneous

surface tractions as given by equation (3c). Therefore, B(tji , (G* ))

implies that the same boundary and in—span conditions apply to as

u when damping is absent (b’.O). In addition, a differential equation

valid throughout the volume is implied by the remaining two term in

1.12
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equation (33). That is, the following boundary value problem may be

deduced from equation (33) :

G*D(v (x,t)) — —F (x,t) (34a)

with boundary and in—span conditions

G*L~~5 (x ,t) P~ (x~t) on S (34b)

The solution of this boundary value problem (~ 9 (x ,t)) will provide

the quasi—static response of a viscoelastic member indicated in equation

(27). Note that this solution is quasi—static in the sense that V
5 
is

a function of x alone which is found for each instant of time.

To complete the dynamic response solution in equation (27), an

uncoupled equation for En(t) must be found. Substitute this equation

into the governing equation of motion (equation (3a) to give

+ G*D 

( 
~~~~~~~ 

E~~~~
) 

— A1~~ + A1 
(
~~~E * )

+ A2~ + A2 
(i1 

~m~m )  
—F (35)

where it is assumed that the infinite series converges at all points of

interest. The first term in equation (35) is equal to —F which can

then be cancelled from either side of this equation. Premultiply by

~~~~
, then integrate over the volume to obtain

+ ~~E <ii;~~Ai *> +

+ Z E  < * , A2 * >  _ Z ( G * E ) <i~~~D* > (36)

1.13
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Note that the validity of reversing the convolution and the summation

sign has been assumed . Apply equation (5a) to the above equation and

then use the biorthogonality relation for undamped members (equation (7))

to find

~ (t) + (a+bA
2)t + XZ(G*E ) — R (t) (37a)

in m m  in in in

where

R (t) — — 

~~ [<~m~
A1~ s> + <~HAz >] (37b )

and where the proportionality condition in equation (18) has been

employed. Note that the condition, B(* ,* ) — 0, which implies that

all boundary and in—span conditions are homogeneous in the free motion

problem, has also been used. The initial conditions for E (t) may

be found by premulciplying -the initial condition form of equation

(27) by ~p A 2 and then integrating over x to give

E (0)
<*,A2u(x ,O)> — <*n~

A2~s~~~
O)> + 

m’.’l ~~ ~*n~
A24~rn> 

(38)

After applying biorthogonality, the generalized initial conditions

are

E (O) — 
[<~~~

A2IiO
3
~
> — <*~~

A2;5
(X
~0)>] 

(19)

and similarly,

— <*a~
A2~ O~~~

> — <*~
,A2v8(x ,O)> (40)

An alternative form of the right—hand side of equation (37a) may be

found which incorporates the complex compliance J (t) of the viscoelastic

I • 14
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material. With this form, either the experimental or modeling information

of a given material may be easily included in the solution for E (t).

Begin by applying the proportionality condition in equation (18) to

give

> (a+bA 2) <ij ,A2 > — b B (ip ,v )  (41)

Substitution of this condition into equation (37b) leads to

R
m 

— — ~~ [(c a+a 2) <~m~
A2 s> — b B(

~ m~~s)] 
(42)

where R denotes the right—hand side of equation (37a), and C
m 
is the

proportionality constant (a+X~b). The inner product may now be trans-

formed by use of the Green ’s identity into

<*m~A2Vs> — <i, ,A2 *>

From equation (6a) , A2~~ may be found to be

— — (44)

which when substituted into equation (43) gives

— — 2 < s’~~ m>

Now apply the extended Green ’s identity,

— 

~~~~~~~~~~~ 
+ B(ij ,) (46)

to obtain from equation (45) the result ,

<i~~,A2~ > — ..
~~~~~~~ 

<;
~~

,D
~5> — B (4, ,v8

) (47)

I .15
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The term Dv may now be transformed by taking the Laplace transform of

equation (34a) ,

sGD — —
~~ 

(48)

where the bar represents the corresponding transformed variable and

G*f (49)

Equation (48) may be easily solved for D 5 to obtain

D~~~_ _ L - s~~ (50)
sG

where the relation be tween the Laplace transforms of the complex

compliance .1 and the relaxation modulus G has been used , i.e.

(51)

Taking the Inverse Laplace transform of equation (50) gives

(52)

Finally, substitute this equation back into equation (47), which when

placed in equation (42) leads to

(c a+a )
R — 

m 
~~~~~~~~~~~~~~~~~~~~~~~~~ - B (~~~~~)] —b s(~~~~~~

;))  
~~~~~~~

This is the alternative form for the right—hand side of equation (37a)

which was sought . This form of R~ (t) involves directly the complex

compliance 3 of ~he viscoelastic material. When substituted back into

equation (37a) the solution for E~
(t) may now be found by taking

several approaches. If a known viacoelastic model composed of springs

~

=S

~
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and dashpots has been selected , the compliance will be known once the

model parameters have been defined. These parameters may be prescribed

a priori or chosen by fitting experimental data to the model [3]. In

addition, experimental data may be used directly in equation (53) without

any reliance on a particular model [4], in which case equation (37a)

would be solved numerically. When a model is used, equation (37a)

may be solved by Laplace transforms, which may be inverted analytically

for simple models. An example of how this procedure may be carried

out f or a Voigt—Kelvin material will be shown in the following

section . Otherwise , a numerical inversion process may be needed.

Another approach which may be taken in finding the coordinates E
~
(t)

f rom equation (37a) has been suggested by Valanis [1]. When a Laplace

transform of equation (37a) has been taken, a Voltera integral equation

of the second kind results. Then , any number of techniques may be

used to solve this integral equation.

To summarize briefly, the dynamic response of a viscoelastic

structural member on a proportional viscous foundation may be formally

expressed by

— E (t)
u(x ,t) — (x , t) + 

~ *~g (X) (54)
rn—i ‘

~m

where *m~~
) and are the corresponding undamped elastic member

eigenfunctions and norm, respectively. The temporal coefficients may

be found by solving

E (t) + (a+b A2)E + X 2 (G*E ) — R (t) (55)
in m m  in a a

1.17
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and R (t) may take on either of the two forms as given by equations

(37b) or (53) . As a special cases, when a — b — 0, a viscoelastic

member without a damped foundation may be examined, and when the

bilinear form is absent the member possesses homogeneous boundary and

in—span conditions.

Illustrative Examples

The formulas derived in the previous section will be applied to

a Voigt—Kelvin beam and an axisynmietric circular plate. The purpose

in treating these examples is to demonstrate the details of the general

formulation for a simple member and then to show that the response of

a more complicated viscoelastic member may be uncoupled by applying

the same steps used for simpler members . In addition, the theoretical

results will be shown to compare with those obtained by Robertson [3],

whose less general treatment was only valid for self—adjoint circular

plates with no damping.

Dynamic Response of a Voigt—Kelvin Beam

Consider the undainped Euler—Bernoulli beam shown in Figure 1.

It is assumed that the material may be modeled as a Voigt—Kelvin

viscoelastic material . The linearly varying distributed load q(x ,t)

is applied at t — 0 and then maintained at that value for all time.

That is,

q(x,t) — 11(t) (56)

where H(t)  is the Heaviside unit function, which poesesse~ the property

11(t) * 3(t) — J( t) (57)

1.18
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The dynamic deflection response for this beam is sought for this loading

condition.

The governing equations of motion for a general viscoelastic beam

have been given by Robertson (4] . The equatious may be reduced to

one fourth order differential equation when shear deformation and

rotary inertia are neglected . When written in the form of equations

(3), the following values are assigned :

D — 2( 1 + v) I A1 
— 0 (58a)

A
2

- — p  F — q  (58b)

u — w(x ,t) u
0 

— d0 
— 0 (58c)

a
2

(Li)
~~.,o~~ 

— 1 (L2 )
~ _ o &  ~~~ (58d)

— 

~
1’
2~x”O,L 

— o (58e)

The dynamic response of this viscoelastic beam may be found from

equation (2 7) to be

— E (t)
w(x ,t) — w ( x ,t) + a 

*m (
~C) (59)

where w5(x ,t) is the quasi—static deflection. For this simple member,

the deflected mode shapes *m (3C) and corresponding elgenvalues Am may be

analytically determined by solving equations (5). That is ,

*m t:X) — sin m — O,+l,+2 ... (60)

and 

A — (!!L) 2 (61)
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so that the corresponding norm may be explicitly determined from equation

(7b) to be

Sn — pL/ 2 (62)

Note that since the elastic beam is self—adj oint , only the modes lP
m

(X)

are needed to determine the response. Therefore, only the temporal

coefficient remains to be determined in the series portion of equation

(59). To f ind E (t) , recall from equations (37a) and (53) that

+ X 2G*E l 
~~ [ f *  (J*q) dx 1 (63)

X 2Q at2 0 UI

m m

where a — b — 0 since the beam is undamped . In addition , the initial

values, Em (O) and t (0) given by equations (39) and (40) are zero

because the initial conditions u0 and u0 are zero . Introduce equations

(56) , (60) , (61) , and (62) into the above expression to arrive at -

— _2t_i~
mt~\E + X2G*E — ‘ ‘ 3(t) (64)

in (mir)~EI /

where equation (57) has been utilized. Eliminate the time variable in

this expression by taking the Laplace transform to obtain

a L ,
a + A 2sCL — — 

2(—1) £ g23~ (65)
a a (mw) 5E1 /

where the initial condit ions of the complex compliance vanish since they

are proportional to and 
~~~~~ 

(37]. Solve for the Laplace transform

of Ea(t) (i.e. 1m~~~ 
to obtain

E — -

Z (12 s..33~ (66)

I • 20

— 5-— —.-, ... . 

- 
—-—~~~~~~._ -- .--- . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .T__— — • y ‘~~~~~~~~~~~~ —~~ -- - ~~~~~



where for convenience

,i

L — ~~~~~~~~~ (67)
in 5(air) El

The Laplace transform of the complex compliance for a Voigt—Ke lvin

material (7] is given by

— — 

(K+ ~)) (68)

where

K q0/q 1 (69)

and q0 and q1 are the spring and dashpot constants in the Voigt—Kelvin

model. Introduce equation (68) into equation (66), and after some

rearrangement arrive at the expression

A 2
B — _L

m
{
(sr;(s r~~ 

+ 
~~~(s—r 1

)(s—r 2
)1 

— •~7(~~ ~~~~ 
(70)

where

— 12q A
r1,r 2 

— UI 1 
~~~~~? 

.Jq~ x 2 — 4q0 (71)

and where the method of partial fractions has been utilized. Prom a

table of Laplace transforms, E (t) may be found by inverting equation

(70) . This results in

E (t) — _L
m ( 1 (r1etlt — r2e

r’2t)

1m ~f;~ q~—4q 0

A r t  r ta 2 1 1 —Kt
— 

_ _ _ _ _ _  

(e — e  ) — —2 e  1 (72)
K ~~A2q~_4q
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From this equation E (t) may be determined. Returning to equation

(59) , only the quasi—static part of the response remains to be found.

One technique that may be used is the correspondence principle (7] .

Recall from elementary strength of materials that the static deflection

of an elastic simply supported beam is

v(x) 180 El [3x 1’ — 5x2 Z 2 + 2t &
~] (73)

Using the correspondence principle, replace q and E by (x/L) -
~~ and ~ (s)/~ (s) ,

respectively, to obtain

(x,s) — l80
1
11q

1 ~~S( K

1

+ ~)) [3x5 — 5x3 L 2 + 2xi~’] (74)

which is the Laplace transform of the quasi—static deflection. Note

that for a Voigt—Kelvin solid [7],

Q ( s)  
= q1(K +5) (75)

p (s)

This equation may be easily inverted to give for the quasi—static

deflection response,

w ( x ,t) — ~ ~~~~~ ~~~ 
+ 2)~~~~ (1 — e~~t ) (76)

which decays as time grows since c 0 .  Hence, the solution of a Voigt—

Kelvin beam given by equation (59) has been determined. It is apparent

that many other methods of solution of equation (63) could have been

pursued. For example , had 3(t) been experimentally determined , a

numerical solution of equation (63) would have been attempted. Or,

this experimental data could be fitted to a more complicated but more

1.22

- - 

- - .5 - S.—— — —5-— .‘-—:- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ .—T-S.—S- -— S:Sr_._ •. 
~~~~

— — - — - 
-



realistic model. However, for more complicated viscoelastic models a

drawback to the previous method of solution is that an inverse Laplace

transform of a complicated function has to be taken. In these cases,

a numerical inverse Laplace transform would probably be warranted.

Dynamic Response of a Viscoelastic Circular Plate

The previous example was given to demonstrate the usage of the general

formulation to find the response of a simple member. The considerable

potential of the general results will now be exhibited by considering

the dynamic axisymmetric response of a viscoelastic annular circular

plate with non—homogeneous moments and shears applied on the boundaries.

The equations of motion for a viscoelastic plate have been derived

by Robertson [3). In the format of equation (3), the following values

are assigned:

~~1 ~~~~~~~~~~~ -~~~~~~~ — -a--- (77a)I R3 
~R2 R 3R R2 2a 2R

0 0

D —  I
I hic~ hK 2 

a
2 i a

L2R0 ‘~R R’ 2R0 ~~~ + j

ra2 ~A2 
— phR F (7Th)

1 q

r +(r~tfl r $0 (R)~~
u(R , t )  ç ~ u0 (R) ~ ~0(R) ‘.

~~ 
(77c)

L w(R ,t)) L w 0 (R) )

The notation used in these equations is defined as follows:

— slope and radial non—dimensional deflection, respectively

p , ic , h ,R0 — mass density , shear area correction factor , thickness,
and outer radius of plate , respectively

1.23
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R — non—dimensionalized variable radius, r/R0 where r is
the plate radius

- 
q — loading intensity on the radial face

— h 3/ 12(1 — 

~~~~

cz2 = h2/ l2R0
2

The non—homogeneous boundary conditions are given by equation (3c).

That is, on R Ri (the inner radius) L
1 

takes the form

I-
I (D0 -~~~+~~~~) 0

L — I

~ L 0 1 (78a)

and on R — R
0 
(the outer radius)

r a
1

K2hL2 
- —i—

1 0 (78b )

Nothing that the bending moment along a circumference (M) and the

transverse shear force on a radial face (Q) are given by

(79)

Q _ G * ~~~!l ( $ + -~~~) (80)

equations (78) are seen to represent an applied moment and shear on

the inner and outer plate radii , respectively. These applied loads

are prescribed to be

I~ i(t
~l I~— 

~ o J P2 — 

~~~ ~ J ( 81)

using the notation of equation (3c).

1.24
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As in the previous example, the general formulas of the previous

section may be used to construct the modal solution. For this member,

the response is given by equation (27) as

~ 
~~(R~tfl 1~m~~I I I I E (t)

(82)

1~
w(R ,t)J (~ ~~(R,t)J

where and are the quasi—static slope and deflection found by

solving equations (34a) and (34b) for each instant of time . The norm

Sn 
and the mode shapes 

~ 
and w are found by solving the undamped free

vibration problem given by equation (5). The temporal coefficients

E
m

(t) are found from equation (37a) where a — b — 0 since no viscous

foundation is present. The term R (t) in equation (37a) is given by

equation (53). Recall that the non—homogeneous boundary conditions

contribute to the dynamic response through the bilinear form

B(~~,v )  takes the form [5],

B(* ,~~) — ~~ s~m + + M — + w Q }  R/ aI 1
~
o (83)
Ri

Therefore, R ( t) in equation (53) becomes

R — — 

~ ~~~ 
w (J*q)R½ dR — w (R~)f 2 (t)  ~~ 

+ 
~~

(R
o

)f
i(t) ~~~ (84)

a Ri

These theoretical results are consistent with those obtained by

Robertson (3] who used a less general approach. In that reference, the

formulas presented here are numerically solved and the interested reader

if referred to that account.
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Summary

In this paper the dynamic response of a viscoelastic member was

theoretically formulated. It has been shown that the uncoupled

equation which results in this modal approach is an integro—differential

equation. Solution of this equation is difficult; however, numerical

solutions are possible [3], [4]. Note that this paper advances the

past efforts of other authors in that non—self—adjoint systems of equation

and proportional viscous damping may be readily included in the solution.

Hence, the dynamic response of a very general viscoelastic structural

member may be determined.
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~~~~~~~~~~~~~~~~(x , t )

w(x , t )  2. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 1 Voigt—Kelvin Beam Under Variable Loading
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NOTATION

a constant of proportionality for viscous damping

N—square spatial matrix

b constant of proportionality for viscous damping

B bilinear functional

c viscous proportionality constant, c — a + A 2b
UI UI in

D N—square matrix linear differential operator

D N—square algebraic adjoint matrix differential operator

h3/12(l — v
0

)

E modulus of elasticity

E temporal coeff icient
UI

F column vector of body forces

G( t) relazation modulus for viscoelastic material

h thickness of plate

temporal coefficient

H(t) Heaviside unit function

generalized forcing function for structural member of
viscoelastic material

I moment of inertia

3(t) complex compliance of a viscoelastic material

£ length of beam

Li spatial matrix differential operator

N bending moment

unit outward normal to bounding surface

column vectors of non—homogeneous boundary and in—span
conditions

q applied loading intensity
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Q transverse shear force on a radial face

Sn classical norm

r radial coordinate direction

R non—dimensional radial coordinate direction

R
~ 

denotes right—hand side of viscoelastic equation

s Laplace transform variable

S denotes bounding surface and in—span condition locations

t time

u(x,t) column vector of dependent state variables

v column vector denoting the quasi—static response of a
viscoelastic member

V shear force

w transverse beam deflection; radial circular plate deflection

wi displacement in the jth coordinate direction

x general point in the multidimensional region;
one—dimensional coordinate direction in a rectangular
coordinate system

Greek Symbols

h2/12a 2

Kronecker delta

IC q
0

/q
1 

in the Voigt—Kelvin model; shear area correction
factor

constant

An denotes the undamped (or classical) frequency or eigenvalue

U constant

Poisson ’s ratio

temporal coefficient

I • 30
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11 3.14159...

p mass density

,~~~ normal stressesrr zz
T dun~ y time variable

shear stressrz

slope of elastic curve for a circular plate

column vector of undamped (or classical) mode shapes or
eigenfunctions corresponding to the nth frequency
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